Metamath Proof Explorer


Theorem pncans

Description: Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 4-Feb-2025)

Ref Expression
Assertion pncans
|- ( ( A e. No /\ B e. No ) -> ( ( A +s B ) -s B ) = A )

Proof

Step Hyp Ref Expression
1 addscom
 |-  ( ( A e. No /\ B e. No ) -> ( A +s B ) = ( B +s A ) )
2 1 eqcomd
 |-  ( ( A e. No /\ B e. No ) -> ( B +s A ) = ( A +s B ) )
3 addscl
 |-  ( ( A e. No /\ B e. No ) -> ( A +s B ) e. No )
4 simpr
 |-  ( ( A e. No /\ B e. No ) -> B e. No )
5 simpl
 |-  ( ( A e. No /\ B e. No ) -> A e. No )
6 3 4 5 subaddsd
 |-  ( ( A e. No /\ B e. No ) -> ( ( ( A +s B ) -s B ) = A <-> ( B +s A ) = ( A +s B ) ) )
7 2 6 mpbird
 |-  ( ( A e. No /\ B e. No ) -> ( ( A +s B ) -s B ) = A )