Metamath Proof Explorer


Theorem pncan3s

Description: Subtraction and addition of equals. (Contributed by Scott Fenton, 4-Feb-2025)

Ref Expression
Assertion pncan3s
|- ( ( A e. No /\ B e. No ) -> ( A +s ( B -s A ) ) = B )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( B -s A ) = ( B -s A )
2 simpr
 |-  ( ( A e. No /\ B e. No ) -> B e. No )
3 simpl
 |-  ( ( A e. No /\ B e. No ) -> A e. No )
4 2 3 subscld
 |-  ( ( A e. No /\ B e. No ) -> ( B -s A ) e. No )
5 2 3 4 subaddsd
 |-  ( ( A e. No /\ B e. No ) -> ( ( B -s A ) = ( B -s A ) <-> ( A +s ( B -s A ) ) = B ) )
6 1 5 mpbii
 |-  ( ( A e. No /\ B e. No ) -> ( A +s ( B -s A ) ) = B )