Description: Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 4-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | npcans | |- ( ( A e. No /\ B e. No ) -> ( ( A -s B ) +s B ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subscl | |- ( ( A e. No /\ B e. No ) -> ( A -s B ) e. No ) |
|
| 2 | simpr | |- ( ( A e. No /\ B e. No ) -> B e. No ) |
|
| 3 | 1 2 | addscomd | |- ( ( A e. No /\ B e. No ) -> ( ( A -s B ) +s B ) = ( B +s ( A -s B ) ) ) |
| 4 | pncan3s | |- ( ( B e. No /\ A e. No ) -> ( B +s ( A -s B ) ) = A ) |
|
| 5 | 4 | ancoms | |- ( ( A e. No /\ B e. No ) -> ( B +s ( A -s B ) ) = A ) |
| 6 | 3 5 | eqtrd | |- ( ( A e. No /\ B e. No ) -> ( ( A -s B ) +s B ) = A ) |