Metamath Proof Explorer


Theorem npcans

Description: Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 4-Feb-2025)

Ref Expression
Assertion npcans
|- ( ( A e. No /\ B e. No ) -> ( ( A -s B ) +s B ) = A )

Proof

Step Hyp Ref Expression
1 subscl
 |-  ( ( A e. No /\ B e. No ) -> ( A -s B ) e. No )
2 simpr
 |-  ( ( A e. No /\ B e. No ) -> B e. No )
3 1 2 addscomd
 |-  ( ( A e. No /\ B e. No ) -> ( ( A -s B ) +s B ) = ( B +s ( A -s B ) ) )
4 pncan3s
 |-  ( ( B e. No /\ A e. No ) -> ( B +s ( A -s B ) ) = A )
5 4 ancoms
 |-  ( ( A e. No /\ B e. No ) -> ( B +s ( A -s B ) ) = A )
6 3 5 eqtrd
 |-  ( ( A e. No /\ B e. No ) -> ( ( A -s B ) +s B ) = A )