Description: Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 4-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | npcans | |- ( ( A e. No /\ B e. No ) -> ( ( A -s B ) +s B ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subscl | |- ( ( A e. No /\ B e. No ) -> ( A -s B ) e. No ) |
|
2 | simpr | |- ( ( A e. No /\ B e. No ) -> B e. No ) |
|
3 | 1 2 | addscomd | |- ( ( A e. No /\ B e. No ) -> ( ( A -s B ) +s B ) = ( B +s ( A -s B ) ) ) |
4 | pncan3s | |- ( ( B e. No /\ A e. No ) -> ( B +s ( A -s B ) ) = A ) |
|
5 | 4 | ancoms | |- ( ( A e. No /\ B e. No ) -> ( B +s ( A -s B ) ) = A ) |
6 | 3 5 | eqtrd | |- ( ( A e. No /\ B e. No ) -> ( ( A -s B ) +s B ) = A ) |