| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negscl |  |-  ( C e. No -> ( -us ` C ) e. No ) | 
						
							| 2 |  | sltadd1 |  |-  ( ( A e. No /\ B e. No /\ ( -us ` C ) e. No ) -> ( A  ( A +s ( -us ` C ) )  | 
						
							| 3 | 1 2 | syl3an3 |  |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( A  ( A +s ( -us ` C ) )  | 
						
							| 4 |  | subsval |  |-  ( ( A e. No /\ C e. No ) -> ( A -s C ) = ( A +s ( -us ` C ) ) ) | 
						
							| 5 | 4 | 3adant2 |  |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( A -s C ) = ( A +s ( -us ` C ) ) ) | 
						
							| 6 |  | subsval |  |-  ( ( B e. No /\ C e. No ) -> ( B -s C ) = ( B +s ( -us ` C ) ) ) | 
						
							| 7 | 6 | 3adant1 |  |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( B -s C ) = ( B +s ( -us ` C ) ) ) | 
						
							| 8 | 5 7 | breq12d |  |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A -s C )  ( A +s ( -us ` C ) )  | 
						
							| 9 | 3 8 | bitr4d |  |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( A  ( A -s C )  |