Metamath Proof Explorer


Theorem sltsub1

Description: Subtraction from both sides of surreal less-than. (Contributed by Scott Fenton, 4-Feb-2025)

Ref Expression
Assertion sltsub1
|- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A  ( A -s C ) 

Proof

Step Hyp Ref Expression
1 negscl
 |-  ( C e. No -> ( -us ` C ) e. No )
2 sltadd1
 |-  ( ( A e. No /\ B e. No /\ ( -us ` C ) e. No ) -> ( A  ( A +s ( -us ` C ) ) 
3 1 2 syl3an3
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( A  ( A +s ( -us ` C ) ) 
4 subsval
 |-  ( ( A e. No /\ C e. No ) -> ( A -s C ) = ( A +s ( -us ` C ) ) )
5 4 3adant2
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( A -s C ) = ( A +s ( -us ` C ) ) )
6 subsval
 |-  ( ( B e. No /\ C e. No ) -> ( B -s C ) = ( B +s ( -us ` C ) ) )
7 6 3adant1
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( B -s C ) = ( B +s ( -us ` C ) ) )
8 5 7 breq12d
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A -s C )  ( A +s ( -us ` C ) ) 
9 3 8 bitr4d
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( A  ( A -s C )