| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negscl | ⊢ ( 𝐶  ∈   No   →  (  -us  ‘ 𝐶 )  ∈   No  ) | 
						
							| 2 |  | sltadd1 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  (  -us  ‘ 𝐶 )  ∈   No  )  →  ( 𝐴  <s  𝐵  ↔  ( 𝐴  +s  (  -us  ‘ 𝐶 ) )  <s  ( 𝐵  +s  (  -us  ‘ 𝐶 ) ) ) ) | 
						
							| 3 | 1 2 | syl3an3 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐴  <s  𝐵  ↔  ( 𝐴  +s  (  -us  ‘ 𝐶 ) )  <s  ( 𝐵  +s  (  -us  ‘ 𝐶 ) ) ) ) | 
						
							| 4 |  | subsval | ⊢ ( ( 𝐴  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐴  -s  𝐶 )  =  ( 𝐴  +s  (  -us  ‘ 𝐶 ) ) ) | 
						
							| 5 | 4 | 3adant2 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐴  -s  𝐶 )  =  ( 𝐴  +s  (  -us  ‘ 𝐶 ) ) ) | 
						
							| 6 |  | subsval | ⊢ ( ( 𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐵  -s  𝐶 )  =  ( 𝐵  +s  (  -us  ‘ 𝐶 ) ) ) | 
						
							| 7 | 6 | 3adant1 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐵  -s  𝐶 )  =  ( 𝐵  +s  (  -us  ‘ 𝐶 ) ) ) | 
						
							| 8 | 5 7 | breq12d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( ( 𝐴  -s  𝐶 )  <s  ( 𝐵  -s  𝐶 )  ↔  ( 𝐴  +s  (  -us  ‘ 𝐶 ) )  <s  ( 𝐵  +s  (  -us  ‘ 𝐶 ) ) ) ) | 
						
							| 9 | 3 8 | bitr4d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐴  <s  𝐵  ↔  ( 𝐴  -s  𝐶 )  <s  ( 𝐵  -s  𝐶 ) ) ) |