| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negscl | ⊢ ( 𝐵  ∈   No   →  (  -us  ‘ 𝐵 )  ∈   No  ) | 
						
							| 2 | 1 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  (  -us  ‘ 𝐵 )  ∈   No  ) | 
						
							| 3 |  | negscl | ⊢ ( 𝐴  ∈   No   →  (  -us  ‘ 𝐴 )  ∈   No  ) | 
						
							| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  (  -us  ‘ 𝐴 )  ∈   No  ) | 
						
							| 5 |  | simp3 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  𝐶  ∈   No  ) | 
						
							| 6 | 2 4 5 | sltadd2d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝐴 )  ↔  ( 𝐶  +s  (  -us  ‘ 𝐵 ) )  <s  ( 𝐶  +s  (  -us  ‘ 𝐴 ) ) ) ) | 
						
							| 7 |  | sltneg | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴  <s  𝐵  ↔  (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝐴 ) ) ) | 
						
							| 8 | 7 | 3adant3 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐴  <s  𝐵  ↔  (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝐴 ) ) ) | 
						
							| 9 |  | simp2 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  𝐵  ∈   No  ) | 
						
							| 10 | 5 9 | subsvald | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐶  -s  𝐵 )  =  ( 𝐶  +s  (  -us  ‘ 𝐵 ) ) ) | 
						
							| 11 |  | simp1 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  𝐴  ∈   No  ) | 
						
							| 12 | 5 11 | subsvald | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐶  -s  𝐴 )  =  ( 𝐶  +s  (  -us  ‘ 𝐴 ) ) ) | 
						
							| 13 | 10 12 | breq12d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( ( 𝐶  -s  𝐵 )  <s  ( 𝐶  -s  𝐴 )  ↔  ( 𝐶  +s  (  -us  ‘ 𝐵 ) )  <s  ( 𝐶  +s  (  -us  ‘ 𝐴 ) ) ) ) | 
						
							| 14 | 6 8 13 | 3bitr4d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐴  <s  𝐵  ↔  ( 𝐶  -s  𝐵 )  <s  ( 𝐶  -s  𝐴 ) ) ) |