Metamath Proof Explorer


Theorem npcans

Description: Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 4-Feb-2025)

Ref Expression
Assertion npcans Could not format assertion : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( ( A -s B ) +s B ) = A ) with typecode |-

Proof

Step Hyp Ref Expression
1 subscl Could not format ( ( A e. No /\ B e. No ) -> ( A -s B ) e. No ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( A -s B ) e. No ) with typecode |-
2 simpr ANoBNoBNo
3 1 2 addscomd Could not format ( ( A e. No /\ B e. No ) -> ( ( A -s B ) +s B ) = ( B +s ( A -s B ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( ( A -s B ) +s B ) = ( B +s ( A -s B ) ) ) with typecode |-
4 pncan3s Could not format ( ( B e. No /\ A e. No ) -> ( B +s ( A -s B ) ) = A ) : No typesetting found for |- ( ( B e. No /\ A e. No ) -> ( B +s ( A -s B ) ) = A ) with typecode |-
5 4 ancoms Could not format ( ( A e. No /\ B e. No ) -> ( B +s ( A -s B ) ) = A ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( B +s ( A -s B ) ) = A ) with typecode |-
6 3 5 eqtrd Could not format ( ( A e. No /\ B e. No ) -> ( ( A -s B ) +s B ) = A ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( ( A -s B ) +s B ) = A ) with typecode |-