Metamath Proof Explorer


Theorem subscl

Description: Closure law for surreal subtraction. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion subscl Could not format assertion : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( A -s B ) e. No ) with typecode |-

Proof

Step Hyp Ref Expression
1 subsval Could not format ( ( A e. No /\ B e. No ) -> ( A -s B ) = ( A +s ( -us ` B ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( A -s B ) = ( A +s ( -us ` B ) ) ) with typecode |-
2 negscl Could not format ( B e. No -> ( -us ` B ) e. No ) : No typesetting found for |- ( B e. No -> ( -us ` B ) e. No ) with typecode |-
3 addscl Could not format ( ( A e. No /\ ( -us ` B ) e. No ) -> ( A +s ( -us ` B ) ) e. No ) : No typesetting found for |- ( ( A e. No /\ ( -us ` B ) e. No ) -> ( A +s ( -us ` B ) ) e. No ) with typecode |-
4 2 3 sylan2 Could not format ( ( A e. No /\ B e. No ) -> ( A +s ( -us ` B ) ) e. No ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( A +s ( -us ` B ) ) e. No ) with typecode |-
5 1 4 eqeltrd Could not format ( ( A e. No /\ B e. No ) -> ( A -s B ) e. No ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( A -s B ) e. No ) with typecode |-