Metamath Proof Explorer


Theorem subscl

Description: Closure law for surreal subtraction. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion subscl ( ( 𝐴 No 𝐵 No ) → ( 𝐴 -s 𝐵 ) ∈ No )

Proof

Step Hyp Ref Expression
1 subsval ( ( 𝐴 No 𝐵 No ) → ( 𝐴 -s 𝐵 ) = ( 𝐴 +s ( -us𝐵 ) ) )
2 negscl ( 𝐵 No → ( -us𝐵 ) ∈ No )
3 addscl ( ( 𝐴 No ∧ ( -us𝐵 ) ∈ No ) → ( 𝐴 +s ( -us𝐵 ) ) ∈ No )
4 2 3 sylan2 ( ( 𝐴 No 𝐵 No ) → ( 𝐴 +s ( -us𝐵 ) ) ∈ No )
5 1 4 eqeltrd ( ( 𝐴 No 𝐵 No ) → ( 𝐴 -s 𝐵 ) ∈ No )