Description: Closure law for surreal subtraction. (Contributed by Scott Fenton, 3-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | subscl | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 -s 𝐵 ) ∈ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subsval | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 -s 𝐵 ) = ( 𝐴 +s ( -us ‘ 𝐵 ) ) ) | |
2 | negscl | ⊢ ( 𝐵 ∈ No → ( -us ‘ 𝐵 ) ∈ No ) | |
3 | addscl | ⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐵 ) ∈ No ) → ( 𝐴 +s ( -us ‘ 𝐵 ) ) ∈ No ) | |
4 | 2 3 | sylan2 | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 +s ( -us ‘ 𝐵 ) ) ∈ No ) |
5 | 1 4 | eqeltrd | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 -s 𝐵 ) ∈ No ) |