Description: Closure law for surreal subtraction. (Contributed by Scott Fenton, 3-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subscl | |- ( ( A e. No /\ B e. No ) -> ( A -s B ) e. No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsval | |- ( ( A e. No /\ B e. No ) -> ( A -s B ) = ( A +s ( -us ` B ) ) ) |
|
| 2 | negscl | |- ( B e. No -> ( -us ` B ) e. No ) |
|
| 3 | addscl | |- ( ( A e. No /\ ( -us ` B ) e. No ) -> ( A +s ( -us ` B ) ) e. No ) |
|
| 4 | 2 3 | sylan2 | |- ( ( A e. No /\ B e. No ) -> ( A +s ( -us ` B ) ) e. No ) |
| 5 | 1 4 | eqeltrd | |- ( ( A e. No /\ B e. No ) -> ( A -s B ) e. No ) |