Metamath Proof Explorer


Theorem subscld

Description: Closure law for surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025)

Ref Expression
Hypotheses subscld.1 φANo
subscld.2 φBNo
Assertion subscld Could not format assertion : No typesetting found for |- ( ph -> ( A -s B ) e. No ) with typecode |-

Proof

Step Hyp Ref Expression
1 subscld.1 φANo
2 subscld.2 φBNo
3 subscl Could not format ( ( A e. No /\ B e. No ) -> ( A -s B ) e. No ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( A -s B ) e. No ) with typecode |-
4 1 2 3 syl2anc Could not format ( ph -> ( A -s B ) e. No ) : No typesetting found for |- ( ph -> ( A -s B ) e. No ) with typecode |-