Database
SURREAL NUMBERS
Surreal arithmetic
Negation and Subtraction
subsid1
Next ⟩
subsid
Metamath Proof Explorer
Ascii
Unicode
Theorem
subsid1
Description:
Identity law for subtraction.
(Contributed by
Scott Fenton
, 3-Feb-2025)
Ref
Expression
Assertion
subsid1
⊢
A
∈
No
→
A
-
s
0
s
=
A
Proof
Step
Hyp
Ref
Expression
1
0sno
⊢
0
s
∈
No
2
subsval
⊢
A
∈
No
∧
0
s
∈
No
→
A
-
s
0
s
=
A
+
s
+
s
⁡
0
s
3
1
2
mpan2
⊢
A
∈
No
→
A
-
s
0
s
=
A
+
s
+
s
⁡
0
s
4
negs0s
⊢
+
s
⁡
0
s
=
0
s
5
4
oveq2i
⊢
A
+
s
+
s
⁡
0
s
=
A
+
s
0
s
6
addsrid
⊢
A
∈
No
→
A
+
s
0
s
=
A
7
5
6
eqtrid
⊢
A
∈
No
→
A
+
s
+
s
⁡
0
s
=
A
8
3
7
eqtrd
⊢
A
∈
No
→
A
-
s
0
s
=
A