Description: Subtraction and addition of equals. (Contributed by Scott Fenton, 4-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pncan3s | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 +s ( 𝐵 -s 𝐴 ) ) = 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | ⊢ ( 𝐵 -s 𝐴 ) = ( 𝐵 -s 𝐴 ) | |
| 2 | simpr | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐵 ∈ No ) | |
| 3 | simpl | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐴 ∈ No ) | |
| 4 | 2 3 | subscld | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐵 -s 𝐴 ) ∈ No ) | 
| 5 | 2 3 4 | subaddsd | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( 𝐵 -s 𝐴 ) = ( 𝐵 -s 𝐴 ) ↔ ( 𝐴 +s ( 𝐵 -s 𝐴 ) ) = 𝐵 ) ) | 
| 6 | 1 5 | mpbii | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 +s ( 𝐵 -s 𝐴 ) ) = 𝐵 ) |