Description: Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pncan2s | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( 𝐴 +s 𝐵 ) -s 𝐴 ) = 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | ⊢ ( 𝐴 +s 𝐵 ) = ( 𝐴 +s 𝐵 ) | |
| 2 | addscl | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 +s 𝐵 ) ∈ No ) | |
| 3 | simpl | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐴 ∈ No ) | |
| 4 | simpr | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐵 ∈ No ) | |
| 5 | 2 3 4 | subaddsd | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( ( 𝐴 +s 𝐵 ) -s 𝐴 ) = 𝐵 ↔ ( 𝐴 +s 𝐵 ) = ( 𝐴 +s 𝐵 ) ) ) | 
| 6 | 1 5 | mpbiri | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( 𝐴 +s 𝐵 ) -s 𝐴 ) = 𝐵 ) |