Description: Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pncan2s | |- ( ( A e. No /\ B e. No ) -> ( ( A +s B ) -s A ) = B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | |- ( A +s B ) = ( A +s B ) | |
| 2 | addscl | |- ( ( A e. No /\ B e. No ) -> ( A +s B ) e. No ) | |
| 3 | simpl | |- ( ( A e. No /\ B e. No ) -> A e. No ) | |
| 4 | simpr | |- ( ( A e. No /\ B e. No ) -> B e. No ) | |
| 5 | 2 3 4 | subaddsd | |- ( ( A e. No /\ B e. No ) -> ( ( ( A +s B ) -s A ) = B <-> ( A +s B ) = ( A +s B ) ) ) | 
| 6 | 1 5 | mpbiri | |- ( ( A e. No /\ B e. No ) -> ( ( A +s B ) -s A ) = B ) |