Metamath Proof Explorer


Theorem pncans

Description: Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 4-Feb-2025)

Ref Expression
Assertion pncans Could not format assertion : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( ( A +s B ) -s B ) = A ) with typecode |-

Proof

Step Hyp Ref Expression
1 addscom Could not format ( ( A e. No /\ B e. No ) -> ( A +s B ) = ( B +s A ) ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( A +s B ) = ( B +s A ) ) with typecode |-
2 1 eqcomd Could not format ( ( A e. No /\ B e. No ) -> ( B +s A ) = ( A +s B ) ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( B +s A ) = ( A +s B ) ) with typecode |-
3 addscl Could not format ( ( A e. No /\ B e. No ) -> ( A +s B ) e. No ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( A +s B ) e. No ) with typecode |-
4 simpr ANoBNoBNo
5 simpl ANoBNoANo
6 3 4 5 subaddsd Could not format ( ( A e. No /\ B e. No ) -> ( ( ( A +s B ) -s B ) = A <-> ( B +s A ) = ( A +s B ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( ( ( A +s B ) -s B ) = A <-> ( B +s A ) = ( A +s B ) ) ) with typecode |-
7 2 6 mpbird Could not format ( ( A e. No /\ B e. No ) -> ( ( A +s B ) -s B ) = A ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( ( A +s B ) -s B ) = A ) with typecode |-