Description: Subtraction of a surreal from itself. (Contributed by Scott Fenton, 3-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subsid | ⊢ ( 𝐴 ∈ No → ( 𝐴 -s 𝐴 ) = 0s ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsval | ⊢ ( ( 𝐴 ∈ No ∧ 𝐴 ∈ No ) → ( 𝐴 -s 𝐴 ) = ( 𝐴 +s ( -us ‘ 𝐴 ) ) ) | |
| 2 | 1 | anidms | ⊢ ( 𝐴 ∈ No → ( 𝐴 -s 𝐴 ) = ( 𝐴 +s ( -us ‘ 𝐴 ) ) ) |
| 3 | negsid | ⊢ ( 𝐴 ∈ No → ( 𝐴 +s ( -us ‘ 𝐴 ) ) = 0s ) | |
| 4 | 2 3 | eqtrd | ⊢ ( 𝐴 ∈ No → ( 𝐴 -s 𝐴 ) = 0s ) |