Description: Surreal multiplication commutes. Part of theorem 7 of Conway p. 19. (Contributed by Scott Fenton, 6-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mulscomd.1 | |- ( ph -> A e. No ) |
|
mulscomd.2 | |- ( ph -> B e. No ) |
||
Assertion | mulscomd | |- ( ph -> ( A x.s B ) = ( B x.s A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulscomd.1 | |- ( ph -> A e. No ) |
|
2 | mulscomd.2 | |- ( ph -> B e. No ) |
|
3 | mulscom | |- ( ( A e. No /\ B e. No ) -> ( A x.s B ) = ( B x.s A ) ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( A x.s B ) = ( B x.s A ) ) |