Metamath Proof Explorer


Theorem mulscomd

Description: Surreal multiplication commutes. Part of theorem 7 of Conway p. 19. (Contributed by Scott Fenton, 6-Mar-2025)

Ref Expression
Hypotheses mulscomd.1
|- ( ph -> A e. No )
mulscomd.2
|- ( ph -> B e. No )
Assertion mulscomd
|- ( ph -> ( A x.s B ) = ( B x.s A ) )

Proof

Step Hyp Ref Expression
1 mulscomd.1
 |-  ( ph -> A e. No )
2 mulscomd.2
 |-  ( ph -> B e. No )
3 mulscom
 |-  ( ( A e. No /\ B e. No ) -> ( A x.s B ) = ( B x.s A ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( A x.s B ) = ( B x.s A ) )