Metamath Proof Explorer


Theorem dmcoels

Description: The domain of coelements in A is the union of A . (Contributed by Rodolfo Medina, 14-Oct-2010) (Revised by Peter Mazsa, 5-Apr-2018) (Revised by Peter Mazsa, 26-Sep-2021)

Ref Expression
Assertion dmcoels
|- dom ~ A = U. A

Proof

Step Hyp Ref Expression
1 df-coels
 |-  ~ A = ,~ ( `' _E |` A )
2 1 dmeqi
 |-  dom ~ A = dom ,~ ( `' _E |` A )
3 dm1cosscnvepres
 |-  dom ,~ ( `' _E |` A ) = U. A
4 2 3 eqtri
 |-  dom ~ A = U. A