Description: Cancellation law for division and multiplication. (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | div1d.1 | |- ( ph -> A e. CC ) |
|
| divcld.2 | |- ( ph -> B e. CC ) |
||
| divmuld.3 | |- ( ph -> C e. CC ) |
||
| divmuld.4 | |- ( ph -> B =/= 0 ) |
||
| divdiv23d.5 | |- ( ph -> C =/= 0 ) |
||
| Assertion | dmdcan2d | |- ( ph -> ( ( A / B ) x. ( B / C ) ) = ( A / C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div1d.1 | |- ( ph -> A e. CC ) |
|
| 2 | divcld.2 | |- ( ph -> B e. CC ) |
|
| 3 | divmuld.3 | |- ( ph -> C e. CC ) |
|
| 4 | divmuld.4 | |- ( ph -> B =/= 0 ) |
|
| 5 | divdiv23d.5 | |- ( ph -> C =/= 0 ) |
|
| 6 | 1 2 4 | divcld | |- ( ph -> ( A / B ) e. CC ) |
| 7 | 2 3 5 | divcld | |- ( ph -> ( B / C ) e. CC ) |
| 8 | 6 7 | mulcomd | |- ( ph -> ( ( A / B ) x. ( B / C ) ) = ( ( B / C ) x. ( A / B ) ) ) |
| 9 | 1 2 3 4 5 | dmdcand | |- ( ph -> ( ( B / C ) x. ( A / B ) ) = ( A / C ) ) |
| 10 | 8 9 | eqtrd | |- ( ph -> ( ( A / B ) x. ( B / C ) ) = ( A / C ) ) |