Metamath Proof Explorer


Theorem dmdju

Description: Domain of a disjoint union of non-empty sets. (Contributed by Thierry Arnoux, 5-Oct-2025)

Ref Expression
Hypothesis dmdju.1
|- ( ( ph /\ x e. A ) -> B =/= (/) )
Assertion dmdju
|- ( ph -> dom U_ x e. A ( { x } X. B ) = A )

Proof

Step Hyp Ref Expression
1 dmdju.1
 |-  ( ( ph /\ x e. A ) -> B =/= (/) )
2 dmiun
 |-  dom U_ x e. A ( { x } X. B ) = U_ x e. A dom ( { x } X. B )
3 dmxp
 |-  ( B =/= (/) -> dom ( { x } X. B ) = { x } )
4 1 3 syl
 |-  ( ( ph /\ x e. A ) -> dom ( { x } X. B ) = { x } )
5 4 iuneq2dv
 |-  ( ph -> U_ x e. A dom ( { x } X. B ) = U_ x e. A { x } )
6 2 5 eqtrid
 |-  ( ph -> dom U_ x e. A ( { x } X. B ) = U_ x e. A { x } )
7 iunid
 |-  U_ x e. A { x } = A
8 6 7 eqtrdi
 |-  ( ph -> dom U_ x e. A ( { x } X. B ) = A )