Description: Domain of a disjoint union of non-empty sets. (Contributed by Thierry Arnoux, 5-Oct-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dmdju.1 | |- ( ( ph /\ x e. A ) -> B =/= (/) ) |
|
Assertion | dmdju | |- ( ph -> dom U_ x e. A ( { x } X. B ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmdju.1 | |- ( ( ph /\ x e. A ) -> B =/= (/) ) |
|
2 | dmiun | |- dom U_ x e. A ( { x } X. B ) = U_ x e. A dom ( { x } X. B ) |
|
3 | dmxp | |- ( B =/= (/) -> dom ( { x } X. B ) = { x } ) |
|
4 | 1 3 | syl | |- ( ( ph /\ x e. A ) -> dom ( { x } X. B ) = { x } ) |
5 | 4 | iuneq2dv | |- ( ph -> U_ x e. A dom ( { x } X. B ) = U_ x e. A { x } ) |
6 | 2 5 | eqtrid | |- ( ph -> dom U_ x e. A ( { x } X. B ) = U_ x e. A { x } ) |
7 | iunid | |- U_ x e. A { x } = A |
|
8 | 6 7 | eqtrdi | |- ( ph -> dom U_ x e. A ( { x } X. B ) = A ) |