Description: Equality of the coset of B and the coset of C implies equivalence of domain elementhood (equivalence is not necessary as opposed to ereldm ). (Contributed by Peter Mazsa, 12-Oct-2018)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dmec2d.1 | |- ( ph -> [ B ] R = [ C ] R ) |
|
Assertion | dmec2d | |- ( ph -> ( B e. dom R <-> C e. dom R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmec2d.1 | |- ( ph -> [ B ] R = [ C ] R ) |
|
2 | eqidd | |- ( ph -> dom R = dom R ) |
|
3 | 2 1 | dmecd | |- ( ph -> ( B e. dom R <-> C e. dom R ) ) |