Metamath Proof Explorer


Theorem brid

Description: Property of the identity binary relation. (Contributed by Peter Mazsa, 18-Dec-2021)

Ref Expression
Assertion brid
|- ( A _I B <-> B _I A )

Proof

Step Hyp Ref Expression
1 cnvi
 |-  `' _I = _I
2 1 breqi
 |-  ( A `' _I B <-> A _I B )
3 reli
 |-  Rel _I
4 3 relbrcnv
 |-  ( A `' _I B <-> B _I A )
5 2 4 bitr3i
 |-  ( A _I B <-> B _I A )