Metamath Proof Explorer


Theorem brid

Description: Property of the identity binary relation. (Contributed by Peter Mazsa, 18-Dec-2021)

Ref Expression
Assertion brid A I B B I A

Proof

Step Hyp Ref Expression
1 cnvi I -1 = I
2 1 breqi A I -1 B A I B
3 reli Rel I
4 3 relbrcnv A I -1 B B I A
5 2 4 bitr3i A I B B I A