Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Preparatory theorems
brid
Next ⟩
ideq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
brid
Description:
Property of the identity binary relation.
(Contributed by
Peter Mazsa
, 18-Dec-2021)
Ref
Expression
Assertion
brid
⊢
A
I
B
↔
B
I
A
Proof
Step
Hyp
Ref
Expression
1
cnvi
⊢
I
-1
=
I
2
1
breqi
⊢
A
I
-1
B
↔
A
I
B
3
reli
⊢
Rel
⁡
I
4
3
relbrcnv
⊢
A
I
-1
B
↔
B
I
A
5
2
4
bitr3i
⊢
A
I
B
↔
B
I
A