Metamath Proof Explorer


Theorem brid

Description: Property of the identity binary relation. (Contributed by Peter Mazsa, 18-Dec-2021)

Ref Expression
Assertion brid ( 𝐴 I 𝐵𝐵 I 𝐴 )

Proof

Step Hyp Ref Expression
1 cnvi I = I
2 1 breqi ( 𝐴 I 𝐵𝐴 I 𝐵 )
3 reli Rel I
4 3 relbrcnv ( 𝐴 I 𝐵𝐵 I 𝐴 )
5 2 4 bitr3i ( 𝐴 I 𝐵𝐵 I 𝐴 )