Metamath Proof Explorer


Theorem dmqseqim

Description: If the domain quotient of a relation is equal to the class A , then the range of the relation is the union of the class. (Contributed by Peter Mazsa, 29-Dec-2021)

Ref Expression
Assertion dmqseqim
|- ( R e. V -> ( Rel R -> ( ( dom R /. R ) = A -> ran R = U. A ) ) )

Proof

Step Hyp Ref Expression
1 unieq
 |-  ( ( dom R /. R ) = A -> U. ( dom R /. R ) = U. A )
2 unidmqseq
 |-  ( R e. V -> ( Rel R -> ( U. ( dom R /. R ) = U. A <-> ran R = U. A ) ) )
3 2 imp
 |-  ( ( R e. V /\ Rel R ) -> ( U. ( dom R /. R ) = U. A <-> ran R = U. A ) )
4 1 3 syl5ib
 |-  ( ( R e. V /\ Rel R ) -> ( ( dom R /. R ) = A -> ran R = U. A ) )
5 4 ex
 |-  ( R e. V -> ( Rel R -> ( ( dom R /. R ) = A -> ran R = U. A ) ) )