Description: If the domain quotient of a relation is equal to the class A , then the range of the relation is the union of the class. (Contributed by Peter Mazsa, 29-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | dmqseqim | |- ( R e. V -> ( Rel R -> ( ( dom R /. R ) = A -> ran R = U. A ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq | |- ( ( dom R /. R ) = A -> U. ( dom R /. R ) = U. A ) |
|
2 | unidmqseq | |- ( R e. V -> ( Rel R -> ( U. ( dom R /. R ) = U. A <-> ran R = U. A ) ) ) |
|
3 | 2 | imp | |- ( ( R e. V /\ Rel R ) -> ( U. ( dom R /. R ) = U. A <-> ran R = U. A ) ) |
4 | 1 3 | syl5ib | |- ( ( R e. V /\ Rel R ) -> ( ( dom R /. R ) = A -> ran R = U. A ) ) |
5 | 4 | ex | |- ( R e. V -> ( Rel R -> ( ( dom R /. R ) = A -> ran R = U. A ) ) ) |