Metamath Proof Explorer


Theorem dmqseqim2

Description: Lemma for erim2 . (Contributed by Peter Mazsa, 29-Dec-2021)

Ref Expression
Assertion dmqseqim2
|- ( R e. V -> ( Rel R -> ( ( dom R /. R ) = A -> ( B e. ran R <-> B e. U. A ) ) ) )

Proof

Step Hyp Ref Expression
1 dmqseqim
 |-  ( R e. V -> ( Rel R -> ( ( dom R /. R ) = A -> ran R = U. A ) ) )
2 eleq2
 |-  ( ran R = U. A -> ( B e. ran R <-> B e. U. A ) )
3 1 2 syl8
 |-  ( R e. V -> ( Rel R -> ( ( dom R /. R ) = A -> ( B e. ran R <-> B e. U. A ) ) ) )