Description: Lemma for erim2 . (Contributed by Peter Mazsa, 29-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | dmqseqim2 | |- ( R e. V -> ( Rel R -> ( ( dom R /. R ) = A -> ( B e. ran R <-> B e. U. A ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmqseqim | |- ( R e. V -> ( Rel R -> ( ( dom R /. R ) = A -> ran R = U. A ) ) ) |
|
2 | eleq2 | |- ( ran R = U. A -> ( B e. ran R <-> B e. U. A ) ) |
|
3 | 1 2 | syl8 | |- ( R e. V -> ( Rel R -> ( ( dom R /. R ) = A -> ( B e. ran R <-> B e. U. A ) ) ) ) |