Metamath Proof Explorer


Theorem dmqseqim2

Description: Lemma for erimeq2 . (Contributed by Peter Mazsa, 29-Dec-2021)

Ref Expression
Assertion dmqseqim2 RVRelRdomR/R=ABranRBA

Proof

Step Hyp Ref Expression
1 dmqseqim RVRelRdomR/R=AranR=A
2 eleq2 ranR=ABranRBA
3 1 2 syl8 RVRelRdomR/R=ABranRBA