Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Domain quotients
dmqseqim2
Next ⟩
releldmqs
Metamath Proof Explorer
Ascii
Unicode
Theorem
dmqseqim2
Description:
Lemma for
erim2
.
(Contributed by
Peter Mazsa
, 29-Dec-2021)
Ref
Expression
Assertion
dmqseqim2
⊢
R
∈
V
→
Rel
⁡
R
→
dom
⁡
R
/
R
=
A
→
B
∈
ran
⁡
R
↔
B
∈
⋃
A
Proof
Step
Hyp
Ref
Expression
1
dmqseqim
⊢
R
∈
V
→
Rel
⁡
R
→
dom
⁡
R
/
R
=
A
→
ran
⁡
R
=
⋃
A
2
eleq2
⊢
ran
⁡
R
=
⋃
A
→
B
∈
ran
⁡
R
↔
B
∈
⋃
A
3
1
2
syl8
⊢
R
∈
V
→
Rel
⁡
R
→
dom
⁡
R
/
R
=
A
→
B
∈
ran
⁡
R
↔
B
∈
⋃
A