Metamath Proof Explorer


Theorem releldmqs

Description: Elementhood in the domain quotient of a relation. (Contributed by Peter Mazsa, 24-Apr-2021)

Ref Expression
Assertion releldmqs A V Rel R A dom R / R u dom R x u R A = u R

Proof

Step Hyp Ref Expression
1 resdm Rel R R dom R = R
2 1 dmqseqd Rel R dom R dom R / R dom R = dom R / R
3 2 eleq2d Rel R A dom R dom R / R dom R A dom R / R
4 3 adantl A V Rel R A dom R dom R / R dom R A dom R / R
5 eldmqsres2 A V A dom R dom R / R dom R u dom R x u R A = u R
6 5 adantr A V Rel R A dom R dom R / R dom R u dom R x u R A = u R
7 4 6 bitr3d A V Rel R A dom R / R u dom R x u R A = u R
8 7 ex A V Rel R A dom R / R u dom R x u R A = u R