Step |
Hyp |
Ref |
Expression |
1 |
|
resdm |
|- ( Rel R -> ( R |` dom R ) = R ) |
2 |
1
|
dmqseqd |
|- ( Rel R -> ( dom ( R |` dom R ) /. ( R |` dom R ) ) = ( dom R /. R ) ) |
3 |
2
|
eleq2d |
|- ( Rel R -> ( A e. ( dom ( R |` dom R ) /. ( R |` dom R ) ) <-> A e. ( dom R /. R ) ) ) |
4 |
3
|
adantl |
|- ( ( A e. V /\ Rel R ) -> ( A e. ( dom ( R |` dom R ) /. ( R |` dom R ) ) <-> A e. ( dom R /. R ) ) ) |
5 |
|
eldmqsres2 |
|- ( A e. V -> ( A e. ( dom ( R |` dom R ) /. ( R |` dom R ) ) <-> E. u e. dom R E. x e. [ u ] R A = [ u ] R ) ) |
6 |
5
|
adantr |
|- ( ( A e. V /\ Rel R ) -> ( A e. ( dom ( R |` dom R ) /. ( R |` dom R ) ) <-> E. u e. dom R E. x e. [ u ] R A = [ u ] R ) ) |
7 |
4 6
|
bitr3d |
|- ( ( A e. V /\ Rel R ) -> ( A e. ( dom R /. R ) <-> E. u e. dom R E. x e. [ u ] R A = [ u ] R ) ) |
8 |
7
|
ex |
|- ( A e. V -> ( Rel R -> ( A e. ( dom R /. R ) <-> E. u e. dom R E. x e. [ u ] R A = [ u ] R ) ) ) |