| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resdm |
|- ( Rel R -> ( R |` dom R ) = R ) |
| 2 |
1
|
dmqseqd |
|- ( Rel R -> ( dom ( R |` dom R ) /. ( R |` dom R ) ) = ( dom R /. R ) ) |
| 3 |
2
|
eleq2d |
|- ( Rel R -> ( A e. ( dom ( R |` dom R ) /. ( R |` dom R ) ) <-> A e. ( dom R /. R ) ) ) |
| 4 |
3
|
adantl |
|- ( ( A e. V /\ Rel R ) -> ( A e. ( dom ( R |` dom R ) /. ( R |` dom R ) ) <-> A e. ( dom R /. R ) ) ) |
| 5 |
|
eldmqsres2 |
|- ( A e. V -> ( A e. ( dom ( R |` dom R ) /. ( R |` dom R ) ) <-> E. u e. dom R E. x e. [ u ] R A = [ u ] R ) ) |
| 6 |
5
|
adantr |
|- ( ( A e. V /\ Rel R ) -> ( A e. ( dom ( R |` dom R ) /. ( R |` dom R ) ) <-> E. u e. dom R E. x e. [ u ] R A = [ u ] R ) ) |
| 7 |
4 6
|
bitr3d |
|- ( ( A e. V /\ Rel R ) -> ( A e. ( dom R /. R ) <-> E. u e. dom R E. x e. [ u ] R A = [ u ] R ) ) |
| 8 |
7
|
ex |
|- ( A e. V -> ( Rel R -> ( A e. ( dom R /. R ) <-> E. u e. dom R E. x e. [ u ] R A = [ u ] R ) ) ) |