Metamath Proof Explorer


Theorem eldmqs1cossres

Description: Elementhood in the domain quotient of the class of cosets by a restriction. (Contributed by Peter Mazsa, 4-May-2019)

Ref Expression
Assertion eldmqs1cossres B V B dom R A / R A u A x u R B = x R A

Proof

Step Hyp Ref Expression
1 elqsg B V B dom R A / R A x dom R A B = x R A
2 df-rex x dom R A B = x R A x x dom R A B = x R A
3 eldm1cossres2 x V x dom R A u A x u R
4 3 elv x dom R A u A x u R
5 4 anbi1i x dom R A B = x R A u A x u R B = x R A
6 5 exbii x x dom R A B = x R A x u A x u R B = x R A
7 2 6 bitri x dom R A B = x R A x u A x u R B = x R A
8 1 7 bitrdi B V B dom R A / R A x u A x u R B = x R A
9 df-rex x u R B = x R A x x u R B = x R A
10 9 rexbii u A x u R B = x R A u A x x u R B = x R A
11 rexcom4 u A x x u R B = x R A x u A x u R B = x R A
12 r19.41v u A x u R B = x R A u A x u R B = x R A
13 12 exbii x u A x u R B = x R A x u A x u R B = x R A
14 11 13 bitri u A x x u R B = x R A x u A x u R B = x R A
15 10 14 bitri u A x u R B = x R A x u A x u R B = x R A
16 8 15 bitr4di B V B dom R A / R A u A x u R B = x R A