Metamath Proof Explorer


Theorem releldmqscoss

Description: Elementhood in the domain quotient of the class of cosets by a relation. (Contributed by Peter Mazsa, 23-Apr-2021)

Ref Expression
Assertion releldmqscoss A V Rel R A dom R / R u dom R x u R A = x R

Proof

Step Hyp Ref Expression
1 eldmqs1cossres A V A dom R dom R / R dom R u dom R x u R A = x R dom R
2 1 adantr A V Rel R A dom R dom R / R dom R u dom R x u R A = x R dom R
3 resdm Rel R R dom R = R
4 3 cosseqd Rel R R dom R = R
5 4 dmqseqd Rel R dom R dom R / R dom R = dom R / R
6 5 eleq2d Rel R A dom R dom R / R dom R A dom R / R
7 6 adantl A V Rel R A dom R dom R / R dom R A dom R / R
8 4 eceq2d Rel R x R dom R = x R
9 8 eqeq2d Rel R A = x R dom R A = x R
10 9 2rexbidv Rel R u dom R x u R A = x R dom R u dom R x u R A = x R
11 10 adantl A V Rel R u dom R x u R A = x R dom R u dom R x u R A = x R
12 2 7 11 3bitr3d A V Rel R A dom R / R u dom R x u R A = x R
13 12 ex A V Rel R A dom R / R u dom R x u R A = x R