Step |
Hyp |
Ref |
Expression |
1 |
|
eldmqs1cossres |
|- ( A e. V -> ( A e. ( dom ,~ ( R |` dom R ) /. ,~ ( R |` dom R ) ) <-> E. u e. dom R E. x e. [ u ] R A = [ x ] ,~ ( R |` dom R ) ) ) |
2 |
1
|
adantr |
|- ( ( A e. V /\ Rel R ) -> ( A e. ( dom ,~ ( R |` dom R ) /. ,~ ( R |` dom R ) ) <-> E. u e. dom R E. x e. [ u ] R A = [ x ] ,~ ( R |` dom R ) ) ) |
3 |
|
resdm |
|- ( Rel R -> ( R |` dom R ) = R ) |
4 |
3
|
cosseqd |
|- ( Rel R -> ,~ ( R |` dom R ) = ,~ R ) |
5 |
4
|
dmqseqd |
|- ( Rel R -> ( dom ,~ ( R |` dom R ) /. ,~ ( R |` dom R ) ) = ( dom ,~ R /. ,~ R ) ) |
6 |
5
|
eleq2d |
|- ( Rel R -> ( A e. ( dom ,~ ( R |` dom R ) /. ,~ ( R |` dom R ) ) <-> A e. ( dom ,~ R /. ,~ R ) ) ) |
7 |
6
|
adantl |
|- ( ( A e. V /\ Rel R ) -> ( A e. ( dom ,~ ( R |` dom R ) /. ,~ ( R |` dom R ) ) <-> A e. ( dom ,~ R /. ,~ R ) ) ) |
8 |
4
|
eceq2d |
|- ( Rel R -> [ x ] ,~ ( R |` dom R ) = [ x ] ,~ R ) |
9 |
8
|
eqeq2d |
|- ( Rel R -> ( A = [ x ] ,~ ( R |` dom R ) <-> A = [ x ] ,~ R ) ) |
10 |
9
|
2rexbidv |
|- ( Rel R -> ( E. u e. dom R E. x e. [ u ] R A = [ x ] ,~ ( R |` dom R ) <-> E. u e. dom R E. x e. [ u ] R A = [ x ] ,~ R ) ) |
11 |
10
|
adantl |
|- ( ( A e. V /\ Rel R ) -> ( E. u e. dom R E. x e. [ u ] R A = [ x ] ,~ ( R |` dom R ) <-> E. u e. dom R E. x e. [ u ] R A = [ x ] ,~ R ) ) |
12 |
2 7 11
|
3bitr3d |
|- ( ( A e. V /\ Rel R ) -> ( A e. ( dom ,~ R /. ,~ R ) <-> E. u e. dom R E. x e. [ u ] R A = [ x ] ,~ R ) ) |
13 |
12
|
ex |
|- ( A e. V -> ( Rel R -> ( A e. ( dom ,~ R /. ,~ R ) <-> E. u e. dom R E. x e. [ u ] R A = [ x ] ,~ R ) ) ) |