Metamath Proof Explorer


Theorem dmqscoelseq

Description: Two ways to express the equality of the domain quotient of the coelements on the class A with the class A . (Contributed by Peter Mazsa, 26-Sep-2021)

Ref Expression
Assertion dmqscoelseq
|- ( ( dom ~ A /. ~ A ) = A <-> ( U. A /. ~ A ) = A )

Proof

Step Hyp Ref Expression
1 dmcoels
 |-  dom ~ A = U. A
2 1 qseq1i
 |-  ( dom ~ A /. ~ A ) = ( U. A /. ~ A )
3 2 eqeq1i
 |-  ( ( dom ~ A /. ~ A ) = A <-> ( U. A /. ~ A ) = A )