Metamath Proof Explorer


Theorem dmqscoelseq

Description: Two ways to express the equality of the domain quotient of the coelements on the class A with the class A . (Contributed by Peter Mazsa, 26-Sep-2021)

Ref Expression
Assertion dmqscoelseq ( ( dom ∼ 𝐴 /𝐴 ) = 𝐴 ↔ ( 𝐴 /𝐴 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 dmcoels dom ∼ 𝐴 = 𝐴
2 1 qseq1i ( dom ∼ 𝐴 /𝐴 ) = ( 𝐴 /𝐴 )
3 2 eqeq1i ( ( dom ∼ 𝐴 /𝐴 ) = 𝐴 ↔ ( 𝐴 /𝐴 ) = 𝐴 )