Metamath Proof Explorer


Theorem qseq1i

Description: Equality theorem for quotient set, inference form. (Contributed by Peter Mazsa, 3-Jun-2021)

Ref Expression
Hypothesis qseq1i.1 𝐴 = 𝐵
Assertion qseq1i ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐶 )

Proof

Step Hyp Ref Expression
1 qseq1i.1 𝐴 = 𝐵
2 qseq1 ( 𝐴 = 𝐵 → ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐶 ) )
3 1 2 ax-mp ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐶 )