Metamath Proof Explorer


Theorem qseq1d

Description: Equality theorem for quotient set, deduction form. (Contributed by Peter Mazsa, 27-May-2021)

Ref Expression
Hypothesis qseq1d.1 ( 𝜑𝐴 = 𝐵 )
Assertion qseq1d ( 𝜑 → ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐶 ) )

Proof

Step Hyp Ref Expression
1 qseq1d.1 ( 𝜑𝐴 = 𝐵 )
2 qseq1 ( 𝐴 = 𝐵 → ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐶 ) )
3 1 2 syl ( 𝜑 → ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐶 ) )