Description: Binary relation on a restriction. (Contributed by Peter Mazsa, 2-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brinxprnres | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝐵 ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) 𝐶 ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐵 𝑅 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brres2 | ⊢ ( 𝐵 ( 𝑅 ↾ 𝐴 ) 𝐶 ↔ 𝐵 ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) 𝐶 ) | |
| 2 | brres | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝐵 ( 𝑅 ↾ 𝐴 ) 𝐶 ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐵 𝑅 𝐶 ) ) ) | |
| 3 | 1 2 | bitr3id | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝐵 ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) 𝐶 ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐵 𝑅 𝐶 ) ) ) |