Metamath Proof Explorer


Theorem brinxprnres

Description: Binary relation on a restriction. (Contributed by Peter Mazsa, 2-Jan-2019)

Ref Expression
Assertion brinxprnres
|- ( C e. V -> ( B ( R i^i ( A X. ran ( R |` A ) ) ) C <-> ( B e. A /\ B R C ) ) )

Proof

Step Hyp Ref Expression
1 brres2
 |-  ( B ( R |` A ) C <-> B ( R i^i ( A X. ran ( R |` A ) ) ) C )
2 brres
 |-  ( C e. V -> ( B ( R |` A ) C <-> ( B e. A /\ B R C ) ) )
3 1 2 bitr3id
 |-  ( C e. V -> ( B ( R i^i ( A X. ran ( R |` A ) ) ) C <-> ( B e. A /\ B R C ) ) )