Description: Binary relation on a restriction. (Contributed by Peter Mazsa, 2-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | brinxprnres | |- ( C e. V -> ( B ( R i^i ( A X. ran ( R |` A ) ) ) C <-> ( B e. A /\ B R C ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brres2 | |- ( B ( R |` A ) C <-> B ( R i^i ( A X. ran ( R |` A ) ) ) C ) |
|
2 | brres | |- ( C e. V -> ( B ( R |` A ) C <-> ( B e. A /\ B R C ) ) ) |
|
3 | 1 2 | bitr3id | |- ( C e. V -> ( B ( R i^i ( A X. ran ( R |` A ) ) ) C <-> ( B e. A /\ B R C ) ) ) |