Step |
Hyp |
Ref |
Expression |
1 |
|
relinxp |
|- Rel ( R i^i ( A X. ran ( R |` A ) ) ) |
2 |
|
relopabv |
|- Rel { <. x , y >. | ( x e. A /\ x R y ) } |
3 |
|
eleq1w |
|- ( x = z -> ( x e. A <-> z e. A ) ) |
4 |
|
breq1 |
|- ( x = z -> ( x R y <-> z R y ) ) |
5 |
3 4
|
anbi12d |
|- ( x = z -> ( ( x e. A /\ x R y ) <-> ( z e. A /\ z R y ) ) ) |
6 |
|
breq2 |
|- ( y = w -> ( z R y <-> z R w ) ) |
7 |
6
|
anbi2d |
|- ( y = w -> ( ( z e. A /\ z R y ) <-> ( z e. A /\ z R w ) ) ) |
8 |
5 7
|
opelopabg |
|- ( ( z e. _V /\ w e. _V ) -> ( <. z , w >. e. { <. x , y >. | ( x e. A /\ x R y ) } <-> ( z e. A /\ z R w ) ) ) |
9 |
8
|
el2v |
|- ( <. z , w >. e. { <. x , y >. | ( x e. A /\ x R y ) } <-> ( z e. A /\ z R w ) ) |
10 |
|
brinxprnres |
|- ( w e. _V -> ( z ( R i^i ( A X. ran ( R |` A ) ) ) w <-> ( z e. A /\ z R w ) ) ) |
11 |
10
|
elv |
|- ( z ( R i^i ( A X. ran ( R |` A ) ) ) w <-> ( z e. A /\ z R w ) ) |
12 |
|
df-br |
|- ( z ( R i^i ( A X. ran ( R |` A ) ) ) w <-> <. z , w >. e. ( R i^i ( A X. ran ( R |` A ) ) ) ) |
13 |
9 11 12
|
3bitr2ri |
|- ( <. z , w >. e. ( R i^i ( A X. ran ( R |` A ) ) ) <-> <. z , w >. e. { <. x , y >. | ( x e. A /\ x R y ) } ) |
14 |
1 2 13
|
eqrelriiv |
|- ( R i^i ( A X. ran ( R |` A ) ) ) = { <. x , y >. | ( x e. A /\ x R y ) } |