Metamath Proof Explorer


Theorem inxprnres

Description: Restriction of a class as a class of ordered pairs. (Contributed by Peter Mazsa, 2-Jan-2019)

Ref Expression
Assertion inxprnres R A × ran R A = x y | x A x R y

Proof

Step Hyp Ref Expression
1 relinxp Rel R A × ran R A
2 relopabv Rel x y | x A x R y
3 eleq1w x = z x A z A
4 breq1 x = z x R y z R y
5 3 4 anbi12d x = z x A x R y z A z R y
6 breq2 y = w z R y z R w
7 6 anbi2d y = w z A z R y z A z R w
8 5 7 opelopabg z V w V z w x y | x A x R y z A z R w
9 8 el2v z w x y | x A x R y z A z R w
10 brinxprnres w V z R A × ran R A w z A z R w
11 10 elv z R A × ran R A w z A z R w
12 df-br z R A × ran R A w z w R A × ran R A
13 9 11 12 3bitr2ri z w R A × ran R A z w x y | x A x R y
14 1 2 13 eqrelriiv R A × ran R A = x y | x A x R y