Metamath Proof Explorer


Theorem dmqs1cosscnvepreseq

Description: Two ways to express the equality of the domain quotient of the coelements on the class A with the class A . (Contributed by Peter Mazsa, 26-Sep-2021)

Ref Expression
Assertion dmqs1cosscnvepreseq ( ( dom ≀ ( E ↾ 𝐴 ) / ≀ ( E ↾ 𝐴 ) ) = 𝐴 ↔ ( 𝐴 /𝐴 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 df-coels 𝐴 = ≀ ( E ↾ 𝐴 )
2 1 dmqseqeq1i ( ( dom ∼ 𝐴 /𝐴 ) = 𝐴 ↔ ( dom ≀ ( E ↾ 𝐴 ) / ≀ ( E ↾ 𝐴 ) ) = 𝐴 )
3 dmqscoelseq ( ( dom ∼ 𝐴 /𝐴 ) = 𝐴 ↔ ( 𝐴 /𝐴 ) = 𝐴 )
4 2 3 bitr3i ( ( dom ≀ ( E ↾ 𝐴 ) / ≀ ( E ↾ 𝐴 ) ) = 𝐴 ↔ ( 𝐴 /𝐴 ) = 𝐴 )