Metamath Proof Explorer
Description: Equality theorem for domain quotient, inference version. (Contributed by Peter Mazsa, 26-Sep-2021)
|
|
Ref |
Expression |
|
Hypothesis |
dmqseqeq1i.1 |
⊢ 𝑅 = 𝑆 |
|
Assertion |
dmqseqeq1i |
⊢ ( ( dom 𝑅 / 𝑅 ) = 𝐴 ↔ ( dom 𝑆 / 𝑆 ) = 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
dmqseqeq1i.1 |
⊢ 𝑅 = 𝑆 |
2 |
|
dmqseqeq1 |
⊢ ( 𝑅 = 𝑆 → ( ( dom 𝑅 / 𝑅 ) = 𝐴 ↔ ( dom 𝑆 / 𝑆 ) = 𝐴 ) ) |
3 |
1 2
|
ax-mp |
⊢ ( ( dom 𝑅 / 𝑅 ) = 𝐴 ↔ ( dom 𝑆 / 𝑆 ) = 𝐴 ) |