Metamath Proof Explorer


Theorem dmqseqeq1d

Description: Equality theorem for domain quotient set, deduction version. (Contributed by Peter Mazsa, 26-Sep-2021)

Ref Expression
Hypothesis dmqseqeq1d.1 ( 𝜑𝑅 = 𝑆 )
Assertion dmqseqeq1d ( 𝜑 → ( ( dom 𝑅 / 𝑅 ) = 𝐴 ↔ ( dom 𝑆 / 𝑆 ) = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 dmqseqeq1d.1 ( 𝜑𝑅 = 𝑆 )
2 dmqseqeq1 ( 𝑅 = 𝑆 → ( ( dom 𝑅 / 𝑅 ) = 𝐴 ↔ ( dom 𝑆 / 𝑆 ) = 𝐴 ) )
3 1 2 syl ( 𝜑 → ( ( dom 𝑅 / 𝑅 ) = 𝐴 ↔ ( dom 𝑆 / 𝑆 ) = 𝐴 ) )