Metamath Proof Explorer


Theorem dmqs1cosscnvepreseq

Description: Two ways to express the equality of the domain quotient of the coelements on the class A with the class A . (Contributed by Peter Mazsa, 26-Sep-2021)

Ref Expression
Assertion dmqs1cosscnvepreseq dom E -1 A / E -1 A = A A / A = A

Proof

Step Hyp Ref Expression
1 df-coels A = E -1 A
2 1 dmqseqeq1i dom A / A = A dom E -1 A / E -1 A = A
3 dmqscoelseq dom A / A = A A / A = A
4 2 3 bitr3i dom E -1 A / E -1 A = A A / A = A