Metamath Proof Explorer


Theorem dmqs1cosscnvepreseq

Description: Two ways to express the equality of the domain quotient of the coelements on the class A with the class A . (Contributed by Peter Mazsa, 26-Sep-2021)

Ref Expression
Assertion dmqs1cosscnvepreseq
|- ( ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A <-> ( U. A /. ~ A ) = A )

Proof

Step Hyp Ref Expression
1 df-coels
 |-  ~ A = ,~ ( `' _E |` A )
2 1 dmqseqeq1i
 |-  ( ( dom ~ A /. ~ A ) = A <-> ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A )
3 dmqscoelseq
 |-  ( ( dom ~ A /. ~ A ) = A <-> ( U. A /. ~ A ) = A )
4 2 3 bitr3i
 |-  ( ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A <-> ( U. A /. ~ A ) = A )