Metamath Proof Explorer


Theorem releldmqscoss

Description: Elementhood in the domain quotient of the class of cosets by a relation. (Contributed by Peter Mazsa, 23-Apr-2021)

Ref Expression
Assertion releldmqscoss ( 𝐴𝑉 → ( Rel 𝑅 → ( 𝐴 ∈ ( dom ≀ 𝑅 /𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑥 ] ≀ 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 eldmqs1cossres ( 𝐴𝑉 → ( 𝐴 ∈ ( dom ≀ ( 𝑅 ↾ dom 𝑅 ) / ≀ ( 𝑅 ↾ dom 𝑅 ) ) ↔ ∃ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑥 ] ≀ ( 𝑅 ↾ dom 𝑅 ) ) )
2 1 adantr ( ( 𝐴𝑉 ∧ Rel 𝑅 ) → ( 𝐴 ∈ ( dom ≀ ( 𝑅 ↾ dom 𝑅 ) / ≀ ( 𝑅 ↾ dom 𝑅 ) ) ↔ ∃ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑥 ] ≀ ( 𝑅 ↾ dom 𝑅 ) ) )
3 resdm ( Rel 𝑅 → ( 𝑅 ↾ dom 𝑅 ) = 𝑅 )
4 3 cosseqd ( Rel 𝑅 → ≀ ( 𝑅 ↾ dom 𝑅 ) = ≀ 𝑅 )
5 4 dmqseqd ( Rel 𝑅 → ( dom ≀ ( 𝑅 ↾ dom 𝑅 ) / ≀ ( 𝑅 ↾ dom 𝑅 ) ) = ( dom ≀ 𝑅 /𝑅 ) )
6 5 eleq2d ( Rel 𝑅 → ( 𝐴 ∈ ( dom ≀ ( 𝑅 ↾ dom 𝑅 ) / ≀ ( 𝑅 ↾ dom 𝑅 ) ) ↔ 𝐴 ∈ ( dom ≀ 𝑅 /𝑅 ) ) )
7 6 adantl ( ( 𝐴𝑉 ∧ Rel 𝑅 ) → ( 𝐴 ∈ ( dom ≀ ( 𝑅 ↾ dom 𝑅 ) / ≀ ( 𝑅 ↾ dom 𝑅 ) ) ↔ 𝐴 ∈ ( dom ≀ 𝑅 /𝑅 ) ) )
8 4 eceq2d ( Rel 𝑅 → [ 𝑥 ] ≀ ( 𝑅 ↾ dom 𝑅 ) = [ 𝑥 ] ≀ 𝑅 )
9 8 eqeq2d ( Rel 𝑅 → ( 𝐴 = [ 𝑥 ] ≀ ( 𝑅 ↾ dom 𝑅 ) ↔ 𝐴 = [ 𝑥 ] ≀ 𝑅 ) )
10 9 2rexbidv ( Rel 𝑅 → ( ∃ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑥 ] ≀ ( 𝑅 ↾ dom 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑥 ] ≀ 𝑅 ) )
11 10 adantl ( ( 𝐴𝑉 ∧ Rel 𝑅 ) → ( ∃ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑥 ] ≀ ( 𝑅 ↾ dom 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑥 ] ≀ 𝑅 ) )
12 2 7 11 3bitr3d ( ( 𝐴𝑉 ∧ Rel 𝑅 ) → ( 𝐴 ∈ ( dom ≀ 𝑅 /𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑥 ] ≀ 𝑅 ) )
13 12 ex ( 𝐴𝑉 → ( Rel 𝑅 → ( 𝐴 ∈ ( dom ≀ 𝑅 /𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑥 ] ≀ 𝑅 ) ) )