Step |
Hyp |
Ref |
Expression |
1 |
|
eldmqs1cossres |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ ( dom ≀ ( 𝑅 ↾ dom 𝑅 ) / ≀ ( 𝑅 ↾ dom 𝑅 ) ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑥 ] ≀ ( 𝑅 ↾ dom 𝑅 ) ) ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ Rel 𝑅 ) → ( 𝐴 ∈ ( dom ≀ ( 𝑅 ↾ dom 𝑅 ) / ≀ ( 𝑅 ↾ dom 𝑅 ) ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑥 ] ≀ ( 𝑅 ↾ dom 𝑅 ) ) ) |
3 |
|
resdm |
⊢ ( Rel 𝑅 → ( 𝑅 ↾ dom 𝑅 ) = 𝑅 ) |
4 |
3
|
cosseqd |
⊢ ( Rel 𝑅 → ≀ ( 𝑅 ↾ dom 𝑅 ) = ≀ 𝑅 ) |
5 |
4
|
dmqseqd |
⊢ ( Rel 𝑅 → ( dom ≀ ( 𝑅 ↾ dom 𝑅 ) / ≀ ( 𝑅 ↾ dom 𝑅 ) ) = ( dom ≀ 𝑅 / ≀ 𝑅 ) ) |
6 |
5
|
eleq2d |
⊢ ( Rel 𝑅 → ( 𝐴 ∈ ( dom ≀ ( 𝑅 ↾ dom 𝑅 ) / ≀ ( 𝑅 ↾ dom 𝑅 ) ) ↔ 𝐴 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ Rel 𝑅 ) → ( 𝐴 ∈ ( dom ≀ ( 𝑅 ↾ dom 𝑅 ) / ≀ ( 𝑅 ↾ dom 𝑅 ) ) ↔ 𝐴 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) ) ) |
8 |
4
|
eceq2d |
⊢ ( Rel 𝑅 → [ 𝑥 ] ≀ ( 𝑅 ↾ dom 𝑅 ) = [ 𝑥 ] ≀ 𝑅 ) |
9 |
8
|
eqeq2d |
⊢ ( Rel 𝑅 → ( 𝐴 = [ 𝑥 ] ≀ ( 𝑅 ↾ dom 𝑅 ) ↔ 𝐴 = [ 𝑥 ] ≀ 𝑅 ) ) |
10 |
9
|
2rexbidv |
⊢ ( Rel 𝑅 → ( ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑥 ] ≀ ( 𝑅 ↾ dom 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑥 ] ≀ 𝑅 ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ Rel 𝑅 ) → ( ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑥 ] ≀ ( 𝑅 ↾ dom 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑥 ] ≀ 𝑅 ) ) |
12 |
2 7 11
|
3bitr3d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ Rel 𝑅 ) → ( 𝐴 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑥 ] ≀ 𝑅 ) ) |
13 |
12
|
ex |
⊢ ( 𝐴 ∈ 𝑉 → ( Rel 𝑅 → ( 𝐴 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑥 ] ≀ 𝑅 ) ) ) |