| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elqsg |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ ( dom ≀ ( 𝑅 ↾ 𝐴 ) / ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑥 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
| 2 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
| 3 |
|
eldm1cossres2 |
⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ) ) |
| 4 |
3
|
elv |
⊢ ( 𝑥 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ) |
| 5 |
4
|
anbi1i |
⊢ ( ( 𝑥 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ( ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
| 6 |
5
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑥 ( ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
| 7 |
2 6
|
bitri |
⊢ ( ∃ 𝑥 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑥 ( ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
| 8 |
1 7
|
bitrdi |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ ( dom ≀ ( 𝑅 ↾ 𝐴 ) / ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑥 ( ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) ) |
| 9 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
| 10 |
9
|
rexbii |
⊢ ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑢 ∈ 𝐴 ∃ 𝑥 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
| 11 |
|
rexcom4 |
⊢ ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑥 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
| 12 |
|
r19.41v |
⊢ ( ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ( ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
| 13 |
12
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑥 ( ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
| 14 |
11 13
|
bitri |
⊢ ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑥 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑥 ( ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
| 15 |
10 14
|
bitri |
⊢ ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑥 ( ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
| 16 |
8 15
|
bitr4di |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ ( dom ≀ ( 𝑅 ↾ 𝐴 ) / ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑢 ∈ 𝐴 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |