Metamath Proof Explorer


Theorem eldmqs1cossres

Description: Elementhood in the domain quotient of the class of cosets by a restriction. (Contributed by Peter Mazsa, 4-May-2019)

Ref Expression
Assertion eldmqs1cossres ( 𝐵𝑉 → ( 𝐵 ∈ ( dom ≀ ( 𝑅𝐴 ) / ≀ ( 𝑅𝐴 ) ) ↔ ∃ 𝑢𝐴𝑥 ∈ [ 𝑢 ] 𝑅 𝐵 = [ 𝑥 ] ≀ ( 𝑅𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 elqsg ( 𝐵𝑉 → ( 𝐵 ∈ ( dom ≀ ( 𝑅𝐴 ) / ≀ ( 𝑅𝐴 ) ) ↔ ∃ 𝑥 ∈ dom ≀ ( 𝑅𝐴 ) 𝐵 = [ 𝑥 ] ≀ ( 𝑅𝐴 ) ) )
2 df-rex ( ∃ 𝑥 ∈ dom ≀ ( 𝑅𝐴 ) 𝐵 = [ 𝑥 ] ≀ ( 𝑅𝐴 ) ↔ ∃ 𝑥 ( 𝑥 ∈ dom ≀ ( 𝑅𝐴 ) ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅𝐴 ) ) )
3 eldm1cossres2 ( 𝑥 ∈ V → ( 𝑥 ∈ dom ≀ ( 𝑅𝐴 ) ↔ ∃ 𝑢𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ) )
4 3 elv ( 𝑥 ∈ dom ≀ ( 𝑅𝐴 ) ↔ ∃ 𝑢𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 )
5 4 anbi1i ( ( 𝑥 ∈ dom ≀ ( 𝑅𝐴 ) ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅𝐴 ) ) ↔ ( ∃ 𝑢𝐴 𝑥 ∈ [ 𝑢 ] 𝑅𝐵 = [ 𝑥 ] ≀ ( 𝑅𝐴 ) ) )
6 5 exbii ( ∃ 𝑥 ( 𝑥 ∈ dom ≀ ( 𝑅𝐴 ) ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅𝐴 ) ) ↔ ∃ 𝑥 ( ∃ 𝑢𝐴 𝑥 ∈ [ 𝑢 ] 𝑅𝐵 = [ 𝑥 ] ≀ ( 𝑅𝐴 ) ) )
7 2 6 bitri ( ∃ 𝑥 ∈ dom ≀ ( 𝑅𝐴 ) 𝐵 = [ 𝑥 ] ≀ ( 𝑅𝐴 ) ↔ ∃ 𝑥 ( ∃ 𝑢𝐴 𝑥 ∈ [ 𝑢 ] 𝑅𝐵 = [ 𝑥 ] ≀ ( 𝑅𝐴 ) ) )
8 1 7 bitrdi ( 𝐵𝑉 → ( 𝐵 ∈ ( dom ≀ ( 𝑅𝐴 ) / ≀ ( 𝑅𝐴 ) ) ↔ ∃ 𝑥 ( ∃ 𝑢𝐴 𝑥 ∈ [ 𝑢 ] 𝑅𝐵 = [ 𝑥 ] ≀ ( 𝑅𝐴 ) ) ) )
9 df-rex ( ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐵 = [ 𝑥 ] ≀ ( 𝑅𝐴 ) ↔ ∃ 𝑥 ( 𝑥 ∈ [ 𝑢 ] 𝑅𝐵 = [ 𝑥 ] ≀ ( 𝑅𝐴 ) ) )
10 9 rexbii ( ∃ 𝑢𝐴𝑥 ∈ [ 𝑢 ] 𝑅 𝐵 = [ 𝑥 ] ≀ ( 𝑅𝐴 ) ↔ ∃ 𝑢𝐴𝑥 ( 𝑥 ∈ [ 𝑢 ] 𝑅𝐵 = [ 𝑥 ] ≀ ( 𝑅𝐴 ) ) )
11 rexcom4 ( ∃ 𝑢𝐴𝑥 ( 𝑥 ∈ [ 𝑢 ] 𝑅𝐵 = [ 𝑥 ] ≀ ( 𝑅𝐴 ) ) ↔ ∃ 𝑥𝑢𝐴 ( 𝑥 ∈ [ 𝑢 ] 𝑅𝐵 = [ 𝑥 ] ≀ ( 𝑅𝐴 ) ) )
12 r19.41v ( ∃ 𝑢𝐴 ( 𝑥 ∈ [ 𝑢 ] 𝑅𝐵 = [ 𝑥 ] ≀ ( 𝑅𝐴 ) ) ↔ ( ∃ 𝑢𝐴 𝑥 ∈ [ 𝑢 ] 𝑅𝐵 = [ 𝑥 ] ≀ ( 𝑅𝐴 ) ) )
13 12 exbii ( ∃ 𝑥𝑢𝐴 ( 𝑥 ∈ [ 𝑢 ] 𝑅𝐵 = [ 𝑥 ] ≀ ( 𝑅𝐴 ) ) ↔ ∃ 𝑥 ( ∃ 𝑢𝐴 𝑥 ∈ [ 𝑢 ] 𝑅𝐵 = [ 𝑥 ] ≀ ( 𝑅𝐴 ) ) )
14 11 13 bitri ( ∃ 𝑢𝐴𝑥 ( 𝑥 ∈ [ 𝑢 ] 𝑅𝐵 = [ 𝑥 ] ≀ ( 𝑅𝐴 ) ) ↔ ∃ 𝑥 ( ∃ 𝑢𝐴 𝑥 ∈ [ 𝑢 ] 𝑅𝐵 = [ 𝑥 ] ≀ ( 𝑅𝐴 ) ) )
15 10 14 bitri ( ∃ 𝑢𝐴𝑥 ∈ [ 𝑢 ] 𝑅 𝐵 = [ 𝑥 ] ≀ ( 𝑅𝐴 ) ↔ ∃ 𝑥 ( ∃ 𝑢𝐴 𝑥 ∈ [ 𝑢 ] 𝑅𝐵 = [ 𝑥 ] ≀ ( 𝑅𝐴 ) ) )
16 8 15 bitr4di ( 𝐵𝑉 → ( 𝐵 ∈ ( dom ≀ ( 𝑅𝐴 ) / ≀ ( 𝑅𝐴 ) ) ↔ ∃ 𝑢𝐴𝑥 ∈ [ 𝑢 ] 𝑅 𝐵 = [ 𝑥 ] ≀ ( 𝑅𝐴 ) ) )