Step |
Hyp |
Ref |
Expression |
1 |
|
elqsg |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ ( dom ≀ ( 𝑅 ↾ 𝐴 ) / ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑥 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
2 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
3 |
|
eldm1cossres2 |
⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ) ) |
4 |
3
|
elv |
⊢ ( 𝑥 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ) |
5 |
4
|
anbi1i |
⊢ ( ( 𝑥 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ( ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
6 |
5
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑥 ( ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
7 |
2 6
|
bitri |
⊢ ( ∃ 𝑥 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑥 ( ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
8 |
1 7
|
bitrdi |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ ( dom ≀ ( 𝑅 ↾ 𝐴 ) / ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑥 ( ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) ) |
9 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
10 |
9
|
rexbii |
⊢ ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑢 ∈ 𝐴 ∃ 𝑥 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
11 |
|
rexcom4 |
⊢ ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑥 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
12 |
|
r19.41v |
⊢ ( ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ( ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
13 |
12
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑥 ( ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
14 |
11 13
|
bitri |
⊢ ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑥 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑥 ( ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
15 |
10 14
|
bitri |
⊢ ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑥 ( ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
16 |
8 15
|
bitr4di |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ ( dom ≀ ( 𝑅 ↾ 𝐴 ) / ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑢 ∈ 𝐴 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |