Metamath Proof Explorer


Theorem eldm1cossres2

Description: Elementhood in the domain of restricted cosets. (Contributed by Peter Mazsa, 30-Dec-2018)

Ref Expression
Assertion eldm1cossres2 ( 𝐵𝑉 → ( 𝐵 ∈ dom ≀ ( 𝑅𝐴 ) ↔ ∃ 𝑥𝐴 𝐵 ∈ [ 𝑥 ] 𝑅 ) )

Proof

Step Hyp Ref Expression
1 eldm1cossres ( 𝐵𝑉 → ( 𝐵 ∈ dom ≀ ( 𝑅𝐴 ) ↔ ∃ 𝑥𝐴 𝑥 𝑅 𝐵 ) )
2 elecALTV ( ( 𝑥 ∈ V ∧ 𝐵𝑉 ) → ( 𝐵 ∈ [ 𝑥 ] 𝑅𝑥 𝑅 𝐵 ) )
3 2 el2v1 ( 𝐵𝑉 → ( 𝐵 ∈ [ 𝑥 ] 𝑅𝑥 𝑅 𝐵 ) )
4 3 rexbidv ( 𝐵𝑉 → ( ∃ 𝑥𝐴 𝐵 ∈ [ 𝑥 ] 𝑅 ↔ ∃ 𝑥𝐴 𝑥 𝑅 𝐵 ) )
5 1 4 bitr4d ( 𝐵𝑉 → ( 𝐵 ∈ dom ≀ ( 𝑅𝐴 ) ↔ ∃ 𝑥𝐴 𝐵 ∈ [ 𝑥 ] 𝑅 ) )