Metamath Proof Explorer


Theorem eldm1cossres2

Description: Elementhood in the domain of restricted cosets. (Contributed by Peter Mazsa, 30-Dec-2018)

Ref Expression
Assertion eldm1cossres2
|- ( B e. V -> ( B e. dom ,~ ( R |` A ) <-> E. x e. A B e. [ x ] R ) )

Proof

Step Hyp Ref Expression
1 eldm1cossres
 |-  ( B e. V -> ( B e. dom ,~ ( R |` A ) <-> E. x e. A x R B ) )
2 elecALTV
 |-  ( ( x e. _V /\ B e. V ) -> ( B e. [ x ] R <-> x R B ) )
3 2 el2v1
 |-  ( B e. V -> ( B e. [ x ] R <-> x R B ) )
4 3 rexbidv
 |-  ( B e. V -> ( E. x e. A B e. [ x ] R <-> E. x e. A x R B ) )
5 1 4 bitr4d
 |-  ( B e. V -> ( B e. dom ,~ ( R |` A ) <-> E. x e. A B e. [ x ] R ) )